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A number of implicit integration schemes for the one-dimensional Euler equations with con- 
servative upwind spatial differencing are tested on a problem of steady discontinuous flow. 
Fastest convergence (quadratic for the first-order “backward Euler” scheme) is obtained with 
the upwind switching provided by van Leer’s differentiable split fluxes, which easily linearize 
in time. With Roe’s nondifferentiable split flux-differences the iterations may get trapped in a 
limit-cycle. This also happens in a second-order scheme with split fluxes, if the matrix coef- 
ficients arising in the implicit time-linearization are not properly centered in space. The use of 
second-order terms computed from split fluxes degrades the accuracy of the solution, 
especially if these are subjected to a limiter for the sake of monotonicity preservation. Second- 
order terms computed from the characteristic variables perform best. 0 1985 Academic Press, Inc. 

1. INTRODUCTION 

Tmplicit time-dependent methods for computing steady inviscid flows have been 
around for some time [ 11, but there have been few applications with strong shocks. 
In particular, the influence of a shock wave on the convergence to a steady state is 
not well known. The aim of this paper is to study the performance of a number of 
implicit schemes for time-integration of the one-dimensional Euler equations using 
conservative upwind-biased spatial differencing for a proper treatment of shocks. 

The implicit method, “backward Euler,” is formulated in Section 2. It is tested on 
a one-dimensional model of the isothermal flow in a spiral galaxy, described in Sec- 
tion 3. Computations of this flow with explicit methods were made by van Albada 
et al. [2]. It makes a good test problem, because of the strong shock (Mach 2.5) 
and the cyclic space-coordinate that prevents disturbances to leave the com- 
putational domain. 
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The performance of schemes with first-order spatial accuracy is described in Sec- 
tion 4. First, Roe’s [3] approximate solution of the Riemann problem for neighbor- 
ing cells is used to provide the upwind switching, with a modification to exclude 
expansion shocks. Then we use flux-vector splitting [ll], with continuously dif- 
ferentiable flux-vectors according to van Leer [4]. 

The latter method is also used in the schemes with second-order spatial accuracy 
tested in Section 5. Such accuracy can be achieved by assuming a set of independent 
state quantities to have linear distributions in each cell, rather than the uniform dis- 
tributions of first-order schemes. The slope of a linear distribution can be found 
through a difference-averaging procedure constrained by the monotonicity con- 
dition [S]. The averaging was applied to differences of various sets of quantities: 
the split flux-vectors, variables related to the characteristic variables, and the 
correct characteristic variables. 

Section 6 contains the main conclusions of this paper. 

2. FORMULATION OF THE METHOD 

Let w denote the vector of it4 conserved state quantities, f(w) the corresponding 
flux-vector and s(w, x) the source-term vector. The space-coordinate is x, time is t. 
We wish to find a stationary solution for w of the hyperbolic equations 

aw 
-= -g+JEg, at 

which is equivalent to the problem of determining w such that the residual g 
vanishes. 

To discretize Eq. (1) we define a grid with N zones centered at the points xi, 
separated by Ax. Time at iteration step n is denoted by t”, the time step by At”, so 
t n+l = t” + At”. Differences with respect to time are written as d,w = wn+ ’ - w” and 
with respect to space as A i + 1,2 w = wi + , - wi. Here wi represents the zone-averaged 
value of w. The vector g is discretized by upwind differencing. 

Let W be the vector consisting of N x M elements wki (k = 1, 2,..., M and 
i = 1, 2,..., N), and let G be defined analogously with elements gki. A class of implicit 
schemes is given by 

L”A,W=[-+f”]A,W=c., (2) 

where M” = M( IV) is a linear operator providing numerical stability for arbitrary 
values of the timestep At”. For c1= 1 and M= aG/a W (the Jacobian of G with 
respect to W), we have the backward Euler or implicit Euler scheme. The latter 
reduces to Newton’s method for finding a root if At” -+ co, in which case quadratic 
convergence is obtained. If the Jacobian dG/a W is costly to form, it may be 
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replaced by a simpler approximation. As a consequence, the number of iterations 
required to obtain a converged solution is likely to increase, but the lower cost per 
iteration may compensate for this. 

The right-hand side G” of Eq. (2) contains all the physics of the problem and 
defines the accuracy of the solution. The matrix L” controls the convergence 
process. 

Newton’s method will work properly if W is sufficiently close to the stationary 
solution. Therefore, the scheme is started with a small At” to let the iteration 
process mimic an explicit, time-accurate integration. Once W starts feeling the 
attraction of the final solution, At” may become large and, if a = 1, Newton’s 
method starts working. The stage of convergence can be monitored by 

RES”=n~;x(,~~f;;;l~~.), k=l,2 ,..., M,i=l,2 ,..., N, 

where hki is some positive constant that prevents division by zero. The time-step is 
derived from this quantity according to 

At” = EIRES”. (4) 

Equation (4) guarantees that in the explicit case (a = 0) the relative change of the 
state quantities per time-step will nowhere exceed E: 

IAt Wkil 1 wg + I$; 6 &, k= 1, 2 ,..., Mand i= 1, 2 ,..., N. 

3. THE TEST PROBLEM 

The test problem, due to Woodward [ 123 and used previously for a comparison 
[2] of explicit methods, is briefly summarized below. It describes the flow of 
isothermal gas along an almost circular path through the stellar gravitational field 
of a rotating two-armed spiral galaxy, as sketched in Fig. 1. The vector of conserved 
quantities in this case is 

where p is the density, u the velocity perpendicular to and u the velocity along the 
spiral arms. The space-coordinate x measures distance perpendicular to the arms; 
the vector of fluxes in this direction is 

PU 
f= 

( 1 
p(u2+c2) ) 
PUV 

(6b) 



IMPLICIT UPWIND METHODS 235 

shock, associated 
with spiral arm 

FIG. 1. Two typical streamlines in the gravitational field of a rotating spiral galaxy. 

with c the effective sound speed, a constant. The source-term vector is 

0 

( i 2P(v-v,)p+-$pAsinq . 

-&-uob 

(6~) 

Here 52 = G!(r) is the angular velocity at a radius r with respect to the center of the 
galaxy. The spiral arms are assumed to be tightly wound, with small pitch angle 8,. 
The unperturbed velocities are approximately u0 = r(SZ - 52,) and U, = ar(Q - QR,), 
where 0, is the pattern speed of the rapidly rotating spiral pattern and a = sin 8, 
G 1. The epicycle frequency K is given by K’= (2Q/r)(d/dr)(r’O), A is the 
amplitude of the spiral perturbation on the gravitational field, and q is the spiral 
phase defined by q = 2x/ar. The source term with A is due to the gravitational field, 
the other source terms are due to the Coriolis force. The problem is periodic: 
w(q + 211, t) = w(q, t). A procedure to find the stationary solution by integrating the 
stationary differential equations is given by Roberts [6]. For sufficiently large A 
this solution is transonic and discontinuous. 

The parameters are chosen as is thought to be appropriate for the solar 
neighborhood: Q = 25 km see-’ kpc-‘, K = 31.3 km set-’ kpc-‘, 52, = 13.5 km 
set-’ kpc-‘, c = 8.56 km set -l, r = 10 kpc, a = sin(6”.7), and A = 72.92 (km sec-‘)2. 

All calculations started from uniform initial values: 

pp=1, UP = 240, tlp=tJ,, i = 1, 2 ,..., N. (74 
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The constants /I,~ in Eq. (3) are chosen to be 

h,,=O, h2i = P;C, hx = PA i = 1, 2 ,..., N. 

Finally, we mention that the source terms are linear in w: 

s= Bw, 

B(x) = 

(7b) 

@a) 

(8b) 

4. FIRST-ORDER ACCURATE RESULTS 

Up to this point we have discretized Eq. (1) in time, yielding Eq. (2), and we 
have specified the source term. We now have to discretize in space in order to 
evaluate aflax. This is done by upwind differencing in two different ways: (i) using 
Roe’s [3] linearized Riemann solution and (ii) using van Leer’s [4] flux-vector 
splitting. For a comprehensive review of upwind-differencing techniques the reader 
is referred to Harten, Lax, and van Leer [7]. 

4.1. Roe’s Approximate Riemann Solver 

An upwind method of discretizing the flux derivative aflax has been described by 
Roe [3,8]. We included Roe’s own modification to suppress expansion shocks, 
reported elsewhere [93. The right-hand side of Eq. (2) becomes 

gr(Wi-1, Wit W;+i)=B,W,-~(A:_,,*Ai-L/2 ~+A,I,~‘;+I/z+“), i = 1, 2 ,..., N, 

(9) 

where Ai+_ &wi- 1, wi) and Ay+1,2(~i, wi+r) are the positive and negative parts of 
the discrete approximations to A(w) = af/aw. Roe’s approximate Riemann solver 
includes a simple recipe to calculate these matrices but their derivatives, needed on 
the left-hand side of (2), are costly to compute and do not even exist in shocks and 
around sonic points. We therefore freeze A* at the old time-level when deriving 
dg/dw. Eq. (2) becomes: 
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(10) 

giving the matrix L” a cyclic block-tridiagonal structure. At this point we remark 
that if the matrix My is given by 

then Eq. (10) can be rewritten as 

[-j$-aM;] A,w=M;w;, i= 1, 2 ,..., N. 

(11) 

(12) 

The convergence behavior of this scheme is given in Fig. 2a, for a = 1, N = 64, 
and E = 0.5. Plotted is “log (RES”) as defined in Eqs. (3) and (7b) versus the num- 
ber of iteration steps n. After some almost explicit searching the convergence 
process sets in, but it suddenly stops. Closer inspection reveals that the solution 
jumps symmetrically up and down across the correct solution: the convergence 
process is locked in a two-vector limit-cycle. An analysis of Eq. (12) makes this 
comprehensible. For tl= 1 and large At” we have 

- M”A, w = M”w”, (13) 

implying that Mnw” + ’ = 0, but not necessarily M”+ iw”+’ = 0 which is actually 
desired. For the two solutions in the limit-cycle we find the following, almost exact 
relation 

M” + lwn + 1= -MHw”. (14) 

Neglecting terms of the order O((A, w)*) we can write the left-hand side as 

jrp+lw”+l- -A4”+1w”+M”+1A,w=M”+1w”+M”A~w 

= iW’+‘w”- Ww” = (A,M) w”. (15) 

Thus we are confronted with the fact that the time derivative of A*:, hence of M, 
was neglected earlier. 

It is worth mentioning that a run with fixed boundary values, taken from the 
exact solution, converged properly (Fig. 2b). Clearly the boundaries provide 
enough damping to avoid the limit-cycle. 
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FIG. 2. (a) Convergence history for scheme (lo), based on Roe’s approximate Riemann solver. The 
iteration process ends up in a two-vector limit-cycle. Parameters: a = 1, E = 0.5. (b) As in (a), but with 
fixed boundary values. (c) As in (a), but with a = 1.2. (d) Convergence history for the j-scheme as given 
in Eq. (15). Parameters: o! = 1, E = 0.5, and /? = 0.5. 

Being aware of Eq. (14) we experimented with two different amendments. The 
most obvious remedy is to make c1> 1, implying under-relaxation. It turned out 
that for a 2 1.2 the scheme converged: the convergence slowed down with increasing 
CI. The behavior for a = 1.2 is shown in Fig. 2c. 

Another way out is to repair the inconsistency of Eq. (13). A consistent for- 
mulation would be - M” + ‘d , w = M” + ‘w”, ensuring that M” + iwn + i = 0. On the 
left-hand side we may replace M” + ’ by M” without reproach. To estimate M” + ’ for 
the right-hand side we devised a predictor-corrector method that will be referred to 
as the “/?-scheme”: 

Step 1 

(lea) 

from which follow V + ’ = w”+ A,“w and &$“+I; 

Step 2 

[&@M”] A,w= [(l +?)M”+@‘+‘] w”, (16b) 

after which follows the final update w” + i =w”+A,w. For /I=0 we have the old 
version of Eq. (12). The obvious choice p = 1, does not lead to convergence. Eq. 
(14) suggests that fi = 4 at least will destroy the limit-cycle. It actually does, as can 
be seen in Fig. 2d, with M= 1. 
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FIG. 3. The converged solution using Roe’s approximate Riemann solver. 

Note that the inversion of the cyclic block-tridiagonal matrix in Step 2 is iden- 
tical to the one in Step 1. Since this inversion is the most elaborate part of the 
scheme, the second step adds a relatively small amount of extra computer time. All 
together the fl-scheme is almost twice as efficient as the original scheme with 
a = 1.2. 

Attempts to optimize the /?-scheme by choosing a linear combination of A,w 
(/I = 0) and A, w(fi = 4) resulted in a somewhat faster convergence, but no significant 
decrease in computer time resulted because of the extra work involved. 

We end this section with Fig. 3, showing the converged solution of Roe’s scheme. 

4.2. Flux- Vector Splitting 

The previous results motivate a version of scheme (2) where M” is the exact 
linearization of the right-hand side G”. This requires a Riemann solver that allows 
continuous differentiation. The simplest one is given by van Leer [4] on the basis 
of flux-vector splitting, a technique due to Steger and Warming [ll]. Another 
possibility is Osher’s [lo] solver, which leads to more complicated formulas and 
will not be considered here. 

In flux-vector splitting, the flux f is considered the sum of a forward flux f + and 
a backward flux f -. Here we use 

581/59/2-5 
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$(u+c)* 
ff= 

il I 
g(u+c)2 , 14 < c, 

$(u+c)2v 

0 I u< -c, 

(17a) 

fp=f-f+, (17b) 

We now can readily derive the Jacobian matrices E * = af ‘law, needed in the 
implicit upwind differencing scheme. Equation (2) becomes 

+ r $aB,i;(E: -E,:) ] ,wt+[;EG,]A,Wi+, A 
=Bwi-&(f; -fE* +f,T+,-frT)q i = 1, 2 ,..., N. (18) 

The matrix L again has a cyclic block-tridiagonal structure. 
The improvement in convergence speed with regard to the previously described 

schemes is dramatic. Figure 4a shows the convergence history: machine zero is 
reached in 16 steps with quadratic convergence. The solution is displayed in Fig. 4b. 
Comparison with Fig. 3 shows that Roe’s modified scheme is superior in describing 
the flow near the sonic point. 

We end this section with the conclusion that quadratic convergence can be 
achieved for discontinuous flows using an implicit first-order upwind-difference 
scheme with a continuously differentiable numerical flux function. We shall use the 
same numerical flux function in the second-order schemes of the next section. 

5. SECOND-ORDER SPATIAL ACCURACY 

We can achieve second-order accuracy by assuming a set of (not necessarily con- 
served) quantities q to have a piecewise linear distribution in each computational 
cell: 
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FIG. 4. (a) Convergence history of the first-order accurate solution for scheme (18), using flux-vector 
splitting. Parameters: a = 1, E = 0.5. (b) Converged solution corresponding with (a). 

The undivided gradient dig”, or simply 1, is found by averaging the differences 
Ai+ l/2@’ and Ai- 1,2qn, or A + and A-. In this way information of 3 zones is used, 
leading to the desired increase in accuracy. In regions where q varies smoothly an 
obvious way of averaging is a = 6 = i(A + + A -). However, this is not justified at 
the head or foot of a discontinuity; some modification is recommended then to limit 
2 to O(Ax). A clear account on this subject is given by van Leer [5] on the basis of 
the monotonicity condition. A smooth approximation of the switches given in [S], 
Eq. (66) has been proposed by van Albada [2]: 

a= 24. A_ +2&z 6 
A: +A: +2&z ’ 

(20) 

where E, is a small bias of order @Ax), preventing clipping of smooth extrema. 
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The averaging-limiting procedure is valid for a given single convection equation, 
implying that we should choose the quantities q to be the characteristic variables of 
our equations. These variables are obtained by the diagonalization of Eq. (1) 
without the source terms; they are listed in Eq. (24). In the following we will con- 
sider averaging on (i) the components of the split flux-vectors f’ as given by 
Eq. (17), (ii) variables related to the characteristic variables, as used in [2], and 
(iii) the true characteristic variables. 

We start with (i). To justify the choice of the split flux-vectors we mention that 
the f * themselves are the characteristic variables that follow from the 

0 100 
ITERRTION 

01 I I I I 
0 90 160 270 360 

SPIRRL PHFlSE 

FIG. 5. (a) Convergence history of the second-order accurate solution for the flux-vector splitting 
scheme (21) with averaging procedure (20) based on the split fluxes (a= 1, .~=0.5). (b) Converged 
solution corresponding with (a). 
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diagonalization of (a~/&) + (af’/ax) = 0, albeit only for 1~1 c c. It is tempting to 
write down the following second-order version of scheme (18): 

[ -;jq;E:_,]A.wi-,+[~-~~i+~(E:-E;)]A~w. 

+ -&+ 1 1 1 AtWi+l =Rw,-& {(f+ +~Aif')-(fi'-I+4Ai-,f+) 
+(f<,-Pi+,f-)-(f; -iAT)>* (21) 

The only change with respect to (18) is the explicit addition of the proper second- 
order terms on the right-hand side; the left-hand side is the same as in (18) in order 
to preserve the block-tridiagonal structure. The effect of the second-order terms is 
that f+ is evaluated at the right boundary of cell i and f,: at the left. 

The convergence history and solution for scheme (21) with N= 64 are given in 
Figs. 5a and b. The solution is not as accurate as we expect from a second-order 
scheme, neither in the supersonic nor in the subsonic region (cf. Fig. 6b). We can 
think of two possible explanations for this. First, in the supersonic regions the 
fluxes f’ are not the characteristic variables of the equations. Second, in a sonic 
point the matrices E* = af */aw are continuous but not continuously differentiable, 
as required in a second-order method. The effect of this can be seen between in the 
plot of u in Fig. 5b: the small jump that is typical for flux-vector splitting around 
the sonic point in a first-order scheme has not disappeared in the second-order 
scheme. 

The bias E: was given a fairly large value in the experiment of Fig. 5, implying 
weak limiting. For smaller values, or stronger limiting, the solution becomes non- 
unique, namely, different for different initial values. This, again, is an effect of the 
nonsmoothness of af ‘/aw worsened by the limiter. Our opinion on the basis of 
these results is that second differences of split fluxes, limited or not limited. should 
be avoided. 

Continuing with (ii) we choose 

9= 

ln P 

UIC 

VIC 

, Ai+ t/zq = , 

AiP 

Aiu 

Aiv 

= 

PiAiql 

CAiq, 

(22) 

We first evaluate p, u and v at both cell boundaries, then use these values to com- 
pute f; at the left boundary and f; at the right. It is necessary to evaluate the 
matrices E+ on the basis of the same boundary values for proper convergence. The 
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use of mid-zone values of E,* as in (21), causes the convergence process to end up 
in a limit-cycle. The deviation from the steady state is largest on the subsonic side 
of the sonic point, suggesting that the limit-cycle is caused by the nonsmoothness of 
E’ around the sonic point. 

Convergence for the scheme with E’ evaluated at the same position as f* was 
achieved within 90 steps for N = 64 and E: = 0.008, as in [Z]. The resulting solution 
is almost indistinguishable from solution obtained with the explicit time-accurate 
scheme of [2]. Comparison with the first-order solution in Fig. 4 shows that the 
kink across the sonic point has disappeared, a result of the second-order approach. 

We have also tried a different averaging procedure, somewhat closer to the 
switches in Eq. (66) of [S] than Eq. (20): 

44, A _ +2Et 

‘= (,A+, + lA-l)‘+2~f 
(23) 

This does not appear to significantly affect the convergence or the accuracy of the 
scheme. 

Finally, we discuss the averaging (iii) applied to differences of the true charac- 
teristic variables: 

4= 

- 

-AiP 

Aiu 

Aiv 

Ai+ 1/2q = 

! = 

Ai+ 112~ ~- 
c 

Ai+ l/20 
c 

- - 
$(Aiq2-Aiql) 

: (ZG+Aiql) 

A;+ 112~ 

C 

(24) 

CAiq3 

We use E: = 0.008 in the averaging procedure (20), as in [2], and evaluate f; 
and El* both from the same boundary values of p, U, and v in zone i. Results are 
shown in Fig. 6. Convergence is significantly faster than for the previous second- 
order schemes. The solution is a notch better in the regions where the flow is 
smooth. Apparently, interpolating the characteristic variables yields the most 
efficient second-order scheme. This scheme is also more efficient than the first-order 
schemes of Figs. 3 and 4b, which require a mesh-refinement of about a factor + to 
match the accuracy of Fig. 6b (see [2, Table 11). 
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FIG. 6. (a) Convergence history of the solution with averaging procedure (20) based on the charac- 
teristic variables (24) (a = 1, E = 0.5, .$ = 0.008). (b) Second-order accurate solution corresponding with 
Fig. 6(a). 

6. CONCLUSIONS 

Our test of implicit upwind-differencing schemes for the Euler equations, 
including two different Riemann solvers lead to the following conclusions. 

(i) Quadratic convergence to a steady state incorporating a shock can be 
achieved with first-order upwind differencing. 

(ii) Incomplete linearization in time of the implicit scheme may cause the 
iteration process to end up in a limit-cycle. One economic way to avoid this is our 
P-scheme. Another, more obvious remedy is to use an exact linearization. This 



246 MULDER AND VAN LEER 

requires a Riemann solver that allows continuous differentiation. Such a solver is 
provided by [4] (tested) or [lo] (not tested). 

(iii) If the second-order terms, needed in second-order upwind schemes, are 
computed directly as differences of split fluxes, the accuracy of the solution degrades 
considerably in our test problem. The best results are obtained from differences of 
the characteristic variables. 

(iv) The decrease in convergence speed for a second-order upwind scheme 
with an incomplete linearization in time is amply compensated by the increase in 
accuracy of the solution. The convergence speed is comparable to that of the non- 
conservative schemes of Napolitano and Dadone [13]. 

The extension of the present method to more than one dimension poses the 
problem of inverting the linear system (2). Several approximative techniques, 
including multigrid, will be discussed in two forthcoming papers [14, 151. 
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